Executive Summary
Informations | |||
---|---|---|---|
Name | CVE-2024-57945 | First vendor Publication | 2025-01-21 |
Vendor | Cve | Last vendor Modification | 2025-01-21 |
Security-Database Scoring CVSS v3
Cvss vector : N/A | |||
---|---|---|---|
Overall CVSS Score | NA | ||
Base Score | NA | Environmental Score | NA |
impact SubScore | NA | Temporal Score | NA |
Exploitabality Sub Score | NA | ||
Calculate full CVSS 3.0 Vectors scores |
Security-Database Scoring CVSS v2
Cvss vector : | |||
---|---|---|---|
Cvss Base Score | N/A | Attack Range | N/A |
Cvss Impact Score | N/A | Attack Complexity | N/A |
Cvss Expoit Score | N/A | Authentication | N/A |
Calculate full CVSS 2.0 Vectors scores |
Detail
In the Linux kernel, the following vulnerability has been resolved: riscv: mm: Fix the out of bound issue of vmemmap address In sparse vmemmap model, the virtual address of vmemmap is calculated as: ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT)). And the struct page's va can be calculated with an offset: (vmemmap + (pfn)). However, when initializing struct pages, kernel actually starts from the first page from the same section that phys_ram_base belongs to. If the first page's physical address is not (phys_ram_base >> PAGE_SHIFT), then we get an va below VMEMMAP_START when calculating va for it's struct page. For example, if phys_ram_base starts from 0x82000000 with pfn 0x82000, the first page in the same section is actually pfn 0x80000. During init_unavailable_range(), we will initialize struct page for pfn 0x80000 with virtual address ((struct page *)VMEMMAP_START - 0x2000), which is below VMEMMAP_START as well as PCI_IO_END. This commit fixes this bug by introducing a new variable 'vmemmap_start_pfn' which is aligned with memory section size and using it to calculate vmemmap address instead of phys_ram_base. |
Original Source
Url : http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-57945 |
Sources (Detail)
Alert History
Date | Informations |
---|---|
2025-01-21 17:20:28 |
|