Executive Summary
Informations | |||
---|---|---|---|
Name | CVE-2025-24357 | First vendor Publication | 2025-01-27 |
Vendor | Cve | Last vendor Modification | 2025-01-27 |
Security-Database Scoring CVSS v3
Cvss vector : N/A | |||
---|---|---|---|
Overall CVSS Score | NA | ||
Base Score | NA | Environmental Score | NA |
impact SubScore | NA | Temporal Score | NA |
Exploitabality Sub Score | NA | ||
Calculate full CVSS 3.0 Vectors scores |
Security-Database Scoring CVSS v2
Cvss vector : | |||
---|---|---|---|
Cvss Base Score | N/A | Attack Range | N/A |
Cvss Impact Score | N/A | Attack Complexity | N/A |
Cvss Expoit Score | N/A | Authentication | N/A |
Calculate full CVSS 2.0 Vectors scores |
Detail
vLLM is a library for LLM inference and serving. vllm/model_executor/weight_utils.py implements hf_model_weights_iterator to load the model checkpoint, which is downloaded from huggingface. It uses the torch.load function and the weights_only parameter defaults to False. When torch.load loads malicious pickle data, it will execute arbitrary code during unpickling. This vulnerability is fixed in v0.7.0. |
Original Source
Url : http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2025-24357 |
CWE : Common Weakness Enumeration
% | Id | Name |
---|---|---|
100 % | CWE-502 | Deserialization of Untrusted Data |
Sources (Detail)
Alert History
Date | Informations |
---|---|
2025-01-27 21:20:30 |
|